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Abstract

Most organizations have a wealth of knowledge about
themselves available online, but little for a visitor to in-
teract with on-site. At the MIT Media Lab, we have de-
signed and deployed a novel intelligent signage system,
the Glass Infrastructure (GI) that enables small groups
of users to physically interact with this data and to dis-
cover the latent connections between people, projects,
and ideas. The displays are built on an adaptive, un-
supervised model of the organization developed using
dimensionality reduction and common sense knowledge
which automatically classifies and organizes the infor-
mation.
The GI is currently in daily use at the lab. We discuss
the AI models development, the integration of AI into an
HCI interface, and the use of the GI during the labs peak
visitor periods. We show that the GI is used repeatedly
by lab visitors and provides a window into the workings
of the organization.

There is an evident trend toward adding interactivity and
computing to the physical spaces in which we work, live and
travel. In part this may be due to the ease with which places
can now be networked, and in part by the decreasing cost of
installed equipment. This is evident in signage, instrumenta-
tion of transportation systems, digital cameras, and portable
applications that connect to these devices. Many of them ex-
pose information about the environment to individuals, either
directly or by means of a mobile device.

We are building the Glass Infrastructure (GI) – a new type
of visitor information kiosk for spaces rich in interesting
artifacts, such as stores, museums, and research laboratories.
Our approach preserves key aspects of exploring collections
of artifacts in physical space, such as object permanence
and social engagement, while also giving users access to
alternative spatial organizations of those artifacts. In the
particular context of our research lab – where physical space
is structured around organizational groupings of researchers –
we wanted to let visitors simultaneously explore research in
a thematicaly-organized space, to help them discover work
related to their interests across research groups. Kiosks are
context dependent, so the information on displayed at each
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kiosk relates to the location of the kiosk and the user or users
standing in front of the kiosk.

The main contribution of this paper is an AI approach
to automatically computing the structure of a thematically-
organized map of artifacts, using only short descriptions of
the artifacts that are likely already available. This approach
eliminates a key obstacle to providing visitors with a current
and coherent thematic interface to artifacts: the difficult and
often contentious human process of organizing the artifacts
thematically. This is particularly true in a context such as
our research lab, where new projects may be added every
day, and the ideas that connect the projects are themselves
emerging, fading, and shifting.

Another important contribution is a collection of design
decisions that harmonize navigating a space of artifacts with
one’s fingers on a large touch-screen kiosk with navigating
with one’s feet in a physical space. In part, we were moti-
vated by the new building designed for our research lab that
we inhabited in 2010. Full of glass and open space that let
one observe physically neighboring research groups from
the perspective of visiting one particular group, the building
drove us to want to help visitors also see research in the con-
ceptual neighborhood of what they were already exploring.
We present the key aspects of this design below, and then
discuss more about their motivation and execution later.

1. Object permanence: Infants discover early on that fleet-
ing images on their retinas are actually caused by objects
that persist over time, and these objects soon become key
organizers of their world view(Piaget 1977). In a similar
way, technological artifacts in our lab space – even more
than the people who make them – become the key orga-
nizers of visitors’ understandings of our lab. Therefore,
the main elements in the GI user experience are persistent
representation of these artifacts. Every view is a view onto
”artifact space” – there are no maps, or org charts unless
they are used to organize and show artifacts. Furthermore,
the representation of these artifacts are designed to persist
across the user experience whenever possible. When a
user is viewing the projects in a particular group and clicks
on one of them to see thematically-related projects, ones
that are already in view simply move over into their new
arrangement.

2. Interests drive perceptual salience: Our interests effect
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Figure 1: A student shares their work with a Media Lab
sponsor using the Glass Infrastructure.

what we see(Egeth and Yantis 1997). When we explore
artifacts in physical space, our interests make relevant prop-
erties of those artifacts seem more salient, and this makes
navigating the space more manageable. In the flat world of
the GI, where small images are substituted for the artifacts
themselves, there is much less information to guide user
salience. Therefore, we explicitly introduced a means to
call attention to artifacts related to users’ expressed inter-
ests, called ”charms”. Users can charm artifacts they’re
interested in, and these charms persist across time (users
wear RFID badges that identify them to each screen, and
allow their charms to be saved and reloaded) In this way,
charming an artifact is similar to bookmarking or favorit-
ing. The key distinction is our ubiquitous use of charms
throughout the interface to call attention to people, groups,
ideas, and projects related to users’ interests.

3. Social engagement: We know that visitors often explore
our laboratory in groups, and that they learn a lot from
each other. Therefore, we designed the GI to also support
social exploration. When two people are in front of a
screen, both their charm sets display in a way that makes it
immediately apparent what interests they have in common.
They may then exchange charms to collaboratively explore
their common interests.

Besides welcoming, informing, and entertaining visitors,
we believe a place-based information system also help or-
ganizations with a common but difficult problem–the silo-
ing of information related to the organization’s various sub-
components. Frequently, people are unaware of what co-
workers are doing down the hall or across the building. 1 Our
system through its interaction design and data model is de-
signed to expose and encourage the exploration of the links

1Since deploying the GI at the MIT Media Lab, we have pro-
totyped a GI install at a large financial software company to help
company employees connect the companies’ own ideas, projects,
and people. Additionally, at the request of our users, we have install
at GI screen at the headquarters of a large bank to enable them to
better navigate the changing Media Lab projects.

between people, what they are doing, and the underlying
ideas.

Such a system needs to be flexible, responding quickly to
changes in the labs research focuses, adding new content and
projects quickly, and helping the user to not become over-
whelmed by the large amounts of information and demoes
available upon their visit to the lab. Underlying the Glass
Infastructure is a text understanding system that drives this
interaction. Rather than rely solely on the graphic design
and position of the stations, we combine this with an analyt-
ical process that dynamically tailors the information to the
ongoing activities in the lab, as recognized from text about
those activities, and ultimately personalizes the perspective
presented to the people using the system at any moment. We
believe this is a novel (if not the first) application of such
techniques to open, public displays. In the following sec-
tions, we describe the manner by which the data is processed,
presented, used, and altered.

Modeling the Media Lab

To create the Glass Infrastructure (GI), we needed a way
to model the relationships that make up the Media Lab. In
the lab there are relationships between projects, researchers,
research groups, the lab’s main directions, and ideas or con-
cepts that inform a project. Each of these connections is
important in building an accurate picture of the lab’s interac-
tions.

We have chosen to combine a “base layer” of common
sense information with domain-specific Media Lab informa-
tion using a technique called blending(Havasi et al. 2009).
Blending extends a machine learning technique across multi-
ple different domains so that the contributions of the domains
to the resulting model are equal(Arnold and Lieberman 2010).
Common sense background knowledge allows one to find
semantic connections in textual information by bridging the
gaps between concepts (such as “bakery” and “coffee shop”
or ”bride” and ”cake”) which would typically require mining
very large data sources to discover(Lieberman et al. 2004).
The Media Lab has only 360 active projects which traverse
the boundaries of technical domains, providing a challenge
for simple bag-of-words or keyword-based techniques. We
use blending to create a model which balances background
knowledge with learned Media Lab-specific information.

We use blending over a dimensionality-reducing machine
learning method called Spectral Association(Havasi, Speer,
and Holmgren 2010) to create a multi-dimensional model
representing the semantic relatedness of projects in the lab, or
a “semantic space”. Closeness in this space signifies similar-
ity of people, projects, focus areas, and ideas (Speer, Havasi,
and Lieberman 2008).

We can help users navigate the lab by recommending
nearby projects to visit based on projects they’ve seen and
liked, tell visitors which projects are similar across the entire
lab, and show them how a project fits into a series of lab-
wide initiatives. This living model of the lab aids visitors in
retaining more of the ideas they encounter here.

We want to be able to build this space in a dynamic and
unsupervised manner. For this purpose, we have chosen to
use the Open Mind Common Sense (OMCS) common sense
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platform(Havasi et al. 2009) and it’s associated dimensional-
ity reduction based inference algorithms(Kenneth Arnold and
Robert Speer and Catherine Havasi and Jason Alonso and
Jayant Krishnamurthy 2008) to provide a consistent basis of
background knowledge. We will explain the creation and use
of the GIs model following a discussion of user interactions.

The Glass Infrastructure

The Glass Infrastructure is currently deployed on 30 screens
throughout the MIT Media Lab, with each location strategi-
cally chosen to be within proximity of one or more lab spaces.
The research groups that occupy a particular lab space are
displayed as the default view on the corresponding screen.
This serves as both the entry point for the users experience of
the system and as a means for the research groups to link their
project collateral to the physical space they inhabit. From
the proximal view, the user is able to shift focus to either a
global view of the lab, drill down into greater detail of each
research group, or direct the experience based on concepts
that interest them. Users equipped with an RFID tag are able
to “favorite” projects to see their conceptual overlap with
other projects, see other users who expressed interest in the
same projects, and review them after they leave the lab.

User Experience

Visiting the Media Lab can be a confusing and overwhelming
process; it can be difficult to remember and manage all of the
interactions and projects not to mention decide which projects
to visit or understand the connections between projects. “Vis-
iting the Media Lab is like drinking from the firehose for
those of us visiting,” a sponsor commented during our user
survey. The GI is designed to help solve this problem.

When a visitor arrives, they recieve a badge with a RFID
identifier. When a user approaches one of the many touch
screens around the building, the system recognizes them and
prompts them to log in. They are presented with a view of the
lab relative specific to the geographic location of the screen
where the user begins their engagement; a list of research
groups that occupy the surrounding space are presented as
buttons on the screen.

Let’s say the user is deciding which project to view next.
The user is able to zoom into a research group to view the
people and the projects that constitute it. She picks a project
she is interested in and selects it. She is then able to see a
video demo of the project in action and other related projects
both in this group and others throughout the lab taking into
account her location, interests, and current project. The ma-
chine learning system clusters projects according to their se-
mantic connections with several predefined topic area which
represent the major interst areas of lab visitors. The user
becomes interested in a topic area and chooses to browse
other local projects in that topic area. The topic area places
the projects she has seen before in context, helping her plan
what to see next.

She can then favorite projects she is interested in and
these are stored in a personal profile she can access after
the visit. Projects that are her favorites are demarcated with
heart shaped badges.

Figure 2: Two users logged into a screen. Image shows
research group detail view with favorited projects indicated
by heart shaped badges, in molecule configuration clustered
by OCMS

When a second user approaches the screen and logs in,
their favorites are also displayed, and items that the two users
have in common are highlighted by having their heart shaped
badges stacked. Users are able to exchange favorites with
each other. One of the core innovations of this user experi-
ence is that it is social, we have successfully encouraged the
sharing of a single screen, a space historically reserved for
solitary interaction. Figure 2 shows a screen detailing the
Viral Communications research group, with two users logged
in.

During public events, we display a large leaderboard, or
community mirror (Borovoy et al. 1998), showing a series of
interesting statistics about the activity of the Glass Infrastruc-
ture including; which screens have the most activity, which
projects are the most popular, who has favorited the most
projects and a ticker that displays the social activity of the
system. When a user favorites a project, this is reflected
on the leaderboard counts. When they exchange a favorite
with another user, the activity feed is updated with a state-
ment such as Pol Y. shared CitiCar with Boris K. at the BT
Laboratory.

After leaving the Media Lab, users are able to log into a
“portfolio” via the Internet where they see a log of the projects
they favorited and the people they shared screens with. The
users may connect with the researchers whose projects inter-
ested them and the people they met while interacting with
the system.
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Interface Design

The interface design of the GI adroitly navigates some chal-
lenging information presentation scenarios. We are able to
manage a dynamically shifting display that rearranges a large
amount of information in response to where the screen is lo-
cated and who is interacting with it, in a clear and consistent
manner.

The core visual mechanism for handling the changes in
screen configuration is animated transitions that crystallize
selected information and keep the users gaze on known enti-
ties as the remainder of the screen re-arranges. For example,
the default state of a screen is a list of research groups. Click-
ing on the name of the research group initiates a transition
whereby the text of the button grows and moves to the top
left of the screen to become the header of the page. At all
times the text remains visible even as the rest of the screen
completely re-arranges. The user is always aware of what
they clicked, and after following the text to the top of the
screen they can now take in the newly arranged display. If
the user has favorited projects that are part of the currently
displayed research group or are conceptually related to the
projects they are browsing, the icon of the project will transi-
tion from the users collection to the inline presentation. Items
that are favorites are demarcated with heart shaped badges.

To support free exploration of all the projects in the labo-
ratory from macro, proximal or interest based entry points
we faced a daunting challenge with respect to navigation.
We needed the user to always be aware of why they were
seeing the current screen configuration and how they could
return to something they had seen before. We solved this
problem by employing a “molecule” metaphor for arrang-
ing the items onscreen. Projects within a research group are
arranged around the circumference of a circle representing
the concept by which they are all linked. Touching a project
focuses the screen around that project; the content on the
screen will relate to that project. The concept to which the
project belongs and the other projects related to it by that
concept also remain on screen at all times, while those no
longer relevant fade out and new associations fade in. Tran-
sitions always maintain elements that dont change onscreen
and maintain the users gaze on the selected element. A back
button allows the user to retrace their steps, while selecting
another project continues the users exploration.

The GI makes heavy use of hardware-accelerated CSS3
animations to create an application-like interface that runs
within a WebKit browser. This platform allows us to leverage
the portability of web standards while simultaneously devel-
oping a pageless, smooth animation dependant interface.

Related Systems and Research

Contributions related to our work have been made in both
the private sector and academia. These come in two general
forms: utility based kiosks that are designed to accomplish or
incentivize specific tasks, and information based kiosks that
are designed to provide contextual access to digital content.
GI fills both of these roles by promoting exploration and
social interaction while presenting custom displays based on
the users and screens physical location.

The United States Library of Congress has begun to deploy
a series of information kiosks that have appeared in several
of their exhibits. The kiosks provide interfaces where patrons
can identify their favorite artifacts and associate them with
a personal account. More information about these artifacts
can then be accessed from home through the “myloc.gov”
web portal 2. The project shares several GI concepts, such as
facilitated exploration through digital “mementos,” but there
is no social component to this system.

Pepsi is producing a recycling kiosk system which allows
consumers to receive incentives based on the amount they
personally recycle. Their system allows users to log in and
provide physical inputs at the kiosk, which are immediately
reflected in the users digital account. The kiosks utilize touch
screens, which allow users to identify themselves using email
addresses 3. Kiosk location is not a factor in this system,
which speaks to the fact that its primary focus is not based
on information display.

A system utilizing RFID linked to student schedules was
deployed to explore the concept of personalized maps on a
college campus. The system was placed in two locations
within the same building. It could detect nearby students
with RFID badges, look up their schedules, and direct them
to their next destination (Luse 2010). Unlike GI, the infor-
mation transfer at this kiosk is uni-directional. The data is
customized based on location and user, but there is no way
for the user to update that data from the kiosk itself.

Common Sense Backend

The model behind the Glass Infrastructure must be derived
from material which the lab already uses and maintains —
the adoption of a new system, such as tagging, would require
motivating the lab to maintain and create the tags and to
update the tags for existing projects. Additionally, hand-
tagging would make it difficult to change focus areas or
maintain project entries for students who have graduated. We
have chosen the Media Lab’s Project List Database (PLDB)
as the source of our data. The PLDB’s central feature is a
an abstract-length description of each project written by the
students, faculty, and staff involved in the project. It also
notes which researchers and groups are affiliated with each
project.

For each project in the PLDB, we can locate the project’s
authors, the research group in which the project resides, and
a short abstract description of the project. The information
in PLDB is updated by researchers continually, with two
primary pushes before the lab’s bi-annual sponsor week.

The information written in the PLDB is primarily in un-
structured natural language and thus is not readily processed
by a computer. A more traditional way of quickly process-
ing unstructured text would be the “bag of words” approach,
where each project is distilled to a list of how frequently each
word appears in the description, and projects are compared

2See http://www.cwhonors.org/CaseStudy/viewCaseStudy2009.
asp?NominationID=175&Username=LiBry

3See http://www.greenerpackage.com/recycling/video˙pepsico˙
unveils˙reverse-vending“%E2“%80“%98dream˙machine“%E2“
%80“%99˙encourage˙recycling
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to each other in that form. However, the PLDB data set is
small, only 325 active projects, and a bag of words approach
would fail to find many fundamental connections.

The Challenges of Natural Language

When we communicate ideas such as telling others about
a research project, we rely on our background knowledge
to make this communication effective. This background
knowledge includes, for example, the knowledge that one
uses a phone to make calls and the conviction that the floor
will hold one’s weight while the air will not. This is a kind
of knowledge that people will almost never state explicitly,
following from the maxim of pragmatics that people avoid
stating information that is obvious to the listener (Grice 1975).
When the listener is a computer, however, this can often
impede the computer’s understanding of unstructured text.

Another problem which is particularly prevalent with the
PLDB data set is the propensity of researchers to refer to an
object or action by many different terms. We also need to
recognize when two projects are talking about the same or
similar problems, even when they may describe the projects
using different terminology or expressions. “Cell phone”,
”cell”, ”phone”, ”mobile phone”, ”smart phone”, ”smart-
phone”, and ”mobile device” are all terms used in the PLDB
to refer to the same thing.

People can readily map these terms on to the same con-
cept, but this may be difficult for a computer without a large
amount of training data. Terminology adapts over time, and
we want a system which can dynamically adapt to new jargon
without a rebuild or redesign — one of the design goals for
the Glass Infrastructure model was to be able to quickly and
automatically adapt to new projects in the lab. Since the
OMCS system learns new words by discovering their rela-
tionships to existing concepts, the system is able to boostrap
understanding of novel words as they are used.

Using Common Sense

To create this semantic model, we choose to use a common
sense knowledge base, Open Mind Common Sense (OMCS)
(Havasi, Speer, and Alonso 2007), and its associated infer-
ence system called Divisi(Kenneth Arnold and Robert Speer
and Catherine Havasi and Jason Alonso and Jayant Krish-
namurthy 2008). The knowledge in OMCS is designed to
provide background information on the way objects relate
to each other in the world (“A mug may contain coffee.”),
people’s goals when they go about their daily lives (“People
want to drink good coffee.”), and the emotional content of
events or situations (“Drinking a warm beverage may be re-
laxing.”). A semantic network, ConceptNet, is created from
the data in OMCS.

To process this information, OMCS utilizes a form of ma-
chine learning called Singular Value Decomposition (SVD)
which when performed on ConceptNet results in AnalogyS-
pace (Speer, Havasi, and Lieberman 2008). The SVD ex-
presses concepts (such as “dog” or ”happiness”) and features
(“made of metal”) from ConceptNet in terms of a core set of
axes, or principal components, that are automatically selected
by the algorithm to represent the most variance in the data.
Thus, semantic similarity can be computed in the resulting

Figure 3: A Luminoso view showing the area shared by both
the “Cognition” and “Music” focus areas. It contains such
projects as “Brain Instrument Interface” and a singing robotic
telepresence chandelier for use in a high-tech opera.

space of axes using operations on vectors which represent
concepts or features in the compressed space.

We can incorporate other information, such as unstruc-
tured information from the PLDB using a technique called
blending. Blending (Havasi et al. 2009), performs inference
over multiple sources of data simultaneously by taking advan-
tage of the overlap between them. This takes the AnalogyS-
pace reasoning process and extends it to work over multiple
data sets – allowing analogies to propagate over different
forms of information. More information and evaluations of
Open Mind Common Sense, ConceptNet, AnalogySpace,
and blending can be found in Havasi et al. (Havasi et al.
2009).

Luminoso

When free text is analyzed using the OMCS toolkit, it is often
analyzed in Luminoso, (Speer et al. 2010) which is designed
to be a GUI for interactive text mining. It creates a seman-
tic space from the ideas in a set of documents, including
common sense background information, and allows interac-
tive exploration. Luminoso is currently in use at over ten of
OMCS’s industrial sponsors, has been evaluated (Speer et al.
2010), and is currently in use in another deployed customer-
facing system 4. These characteristics makes it an excellent
candidate for an unsupervised deployment such as in the
Glass Infrastructure.

At the time the GI was created, Luminoso was designed
primarily as a graphical user interface. For the GI project, the
main Luminoso code was was modified to support a GUI-less
server implementation. The Infrastructure’s Java front-end
communicates with the Luminoso server’s Python backend
through a REST API. This setup and infrastructure would
become the dominant way to interact with the Luminoso

4Deployed at a large financial software company. For an intro-
duction to Luminoso, please consult (Speer et al. 2010).

1593



toolkit.

Building a Semantic Space

In order to build a multi-dimensional representation of the
concepts with Media Lab projects using the mostly textual in-
formation in the PLDB, Luminoso must process the text and
blend this text with the information in ConceptNet. We need
to find and isolate patterns in all facets of our data set: those
in the domain specific PLDB, those in common sense (like
those discovered in AnalogySpace), and those that are only
apparent in a combination between common sense and PLDB
information. We can use these patterns to find correlations
between objects in our space, and from those similarities
we can find meaning in our data which will help the Glass
Infrastructure’s users find projects which fit their interests.
Luminoso and OMCS have been used successfully to com-
bine information in this way before, for examples see (Havasi
et al. 2009),(Havasi, Speer, and Pustejovsky 2009),(Mueller
2006).

Since OMCS’s concepts were created from and are stored
in natural language, it’s fairly easy to make connections be-
tween the PLDB text and the information in the common
sense database. These techniques build on the power of LSA
(Deerwester et al. 1990) which performs dimensionality re-
duction on the bag of words models described earlier, both by
modifying the algorithm used to perform the decomposition
and by including a basis of common sense knowledge. Com-
mon sense can recognize when two words are semantically
close to one another even when this closeness is not apparent
from the document concurrence. Thus common sense would
be able to tell that ”user interface” and ”computer” are related
and it would be able to distinguish between different different
topic areas that exist independently of the input data, such as
“action verbs”, “household items”, “computer terminology”,
and “things people don’t want”. This allows more of the
intuitive or rough meaning of the project descriptions to be
captured in the vector space.

To begin to build the space, some simple pre-NLP process-
ing is applied to the project descriptions. Common words
such as “and” and ”the” are removed, verbs are stripped
of inflections, contractions are unpacked, and the space is
normalized so that projects with longer descriptions are not
given more weight in the final model.

For its dimensionality reduction, Luminoso uses a tech-
nique call Spectral Association (Havasi, Speer, and Holmgren
2010) which finds relational connections (such as “puppy”
and “cute” or “sadness” and ”crying”) that would not readily
appear in the standard AnalogySpace inference algorithm.
Spectral association uses a symmetric matrix that expresses
which terms are related, rather than AnalogySpace’s term-by-
feature matrix. This technique works on large sets of related
words at one time, which gives Luminoso the ability to gen-
eralize from extremely sparse input data, even as sparse as a
single word (Cambria et al. 2010).

In the PLDB data, terms are strongly associated when they
appear in the same sentence, and more weakly associated
when they appear in the same project description. Concept-
Net is blended into this matrix as an association matrix of
concepts by concepts. A model that overlaps the two matrices

is then found using the standard “rough blending” method
(Arnold and Lieberman 2010)(Havasi et al. 2009) to create
our semantic space

Processing the Text

There are a number of steps involved in creating a vector
space from the information contained in the PLDB:

• Query the PLDB to discover the researchers, research
group, and project description for each active project.

• Use ConceptNet to find the terms and phrases that appear
in each document such as ”cell phone” or ”user interface”.

• Remove stop words and inflections, but preserve a reverse
mapping for the purpose of outputting the phrases. For
example, “Opera of the Future” should appear in that form,
not as the system’s internal phrase of “opus future”.

• Account for negative relations: words that appear be-
tween a negation token (such as not) and punctuation are
counted negatively. The system can handle double nega-
tives, should they occur.

• Create special words inside each document to identify the
research group and researchers involved in the project,
such as Lifelong Kindergarden or minsky.

• Place the counts in a matrix whose rows are Media Lab
projects and whose columns are terms. This is the “project
matrix”.

• Normalize the matrix with TF-IDF, so that words which
are common across many documents are given less weight
than those which appear in only a subset.

• Drop terms that appear fewer than a threshold number of
times, to simplify the model. We use a threshold of three.

• Scan over the documents again. Create a new symmetric
matrix containing the implicit associations between terms
in the documents, A.
– Whenever terms appear in the same sentence, increment

their entry in A. by 1. Whenever terms appear in adja-
cent sentences, increment their entry in A by 1/2.

• Use blending to combine together the matrix above with
the ConceptNet association matrix.

• Find the spectral decomposition of the blended matrix; this
is your semantic space (PLDB-space).

• Create a projection of the project matrix into the semantic
space, by multiplying them along the axis of terms.

Finding similarity

The result of these calculations is a vector space where similar
projects are represented by nearby vectors (Speer, Havasi,
and Lieberman 2008). If we want to find projects similar
to a given project, we simply find the project vector in our
PLDB-space and find projects whose vectors are closest in
the semantic space. Here, closeness can be measured by the
angle between the two vectors — projects with a small angle
between them are similar.

We can personalize our recommendations by taking into
account the charms, or favorited projects, which have been
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Figure 4: Heat-map showing GI usage at different screens
over a period of two weeks during our second sponsor week
deployment.

acquired by the user or users currently using the Charms
system. By adding the vectors for each of the user’s favorited
projects together to form a new vector called an ad-hoc cate-
gory vector (Havasi, Speer, and Pustejovsky 2009). We let
that vector represent the users preferences in the space and
then use the similarity metric described above to find projects
similar to that category vector. This extends to recommenda-
tions for multiple users as well: we can simply combine their
charms, placing a greater weight on charms that both users
have.

Focus Areas

A central part of the Glass Infrastructure is its automatic cate-
gorization of projects into several categories that serve as the
lab’s focus areas or directions. These categories, which cut
across multiple lab groups, were pre-defined by the Media
Lab’s leadership. As the lab’s focus areas change from time
to time (the categories have changed twice during our deploy-
ment), and new projects arise that need to be categorized,
it’s important that calculating these categories is a quick and
unsupervised (from the AI’s point of view) process.

We represented the categories as canonical documents in
Luminoso. In the graphical version of Luminoso, a canonical
document serves as a “signpost” in the visual representation
of the semantic space and as a focus area during Luminoso’s
statistical analysis of the space (Speer et al. 2010). In the
Glass Infrastructure, a canonical document serves as a focal
point for a cluster; the resulting clustering helps the user
understand the big ideas behind a project and how that project
relates, through that big idea, to lab-wide research focuses
and other projects.

Canonical documents behave like the ad-hoc cate-
gories(Havasi, Speer, and Pustejovsky 2009) described above,
but for a set of words that is defined by Luminoso’s users
— in this case the architects of the Glass Infrastructure. Lu-
minoso can often discover categories simply given the cat-

egory’s name, but since many of the Lab’s category names
are idiosyncratic, we proved several words which would
help define, and in some cases target, the model’s definition
of the particular lab direction. For example, the category
“Re-ability” focuses on helping those with disabilities and
contains words such as “prosthesis” and “autism”, focuses
of the lab’s research in that area. In Figure 3, we can see the
area defined by the canonical documents “Cognition” and
”Music”.

Before the launch of the Glass Infrastructure, researchers
and students were invited to check the categorization of their
project. Most of the Media Labs researchers showed up to
check the categorization and there were no complaints of
incorrect categorization.

Usage at the Media Lab

Fall 2010 Spring 2011
Click events 4883 3720

Unique user logins 215 201
Logins at multiple locations 60 99

Co-logins 95 111
Favoriting events 332 568

Favoriters 81 92
Unique projects favorited 141 221

Average time spent on-screen 25sec 25sec

Table 1: “Logins at multiple locations” reflects ubiquity of
system use by one person. “Co-logins” is the number of
unique pairs that visitors formed when logging-in at the same
time on the same screen. “Favoriters” are the unique visitors
who have favorited at least one project.

The system was first deployed in the Media Lab building
in May 2010, in time for the bi-annual sponsor event that
the Media Lab hosts every Fall and Spring. Each of these
events is attended by roughly one thousand people, including
representatives from nearly a hundred companies and Media
Lab students, faculty, and staff. The GI has now been in place
across three sponsor meetings, and the bulk of the activity
clusters around those events.

Figure 4 shows a more detailed look of GI activity across
time and space during – and immediately following – the
Fall 2010 Sponsor Event. Each number in this heat-map
reflects the number of times a user clicked (really touched) a
UI object on a particular screen on a particular date. Higher
numbers correspond to brighter green coloring; for example,
the chart reflects peak activity on October 14 when screen
charm-5 was clicked 4134 times. This diagram shows that on
October 14th and 15th there was substantial use of most of
the GI screens. This use tapered off on the days that followed,
as the Media Lab returned to a more normal activity pattern.

These numbers indicate a relative increase in user engage-
ment during the second event. Increased engagement is also
evident from the usage statistics which show that while the ab-
solute number of navigation event decreased in the last event,
user engagement was richer in terms of location ubiquity
(more logins at multiple locations by the same user), more
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GI Goal 1 2 3 4 5

Discover new projects 1 0 2 9 5
Find out more about interesting projects 1 0 4 11 1
Connect with other sponsors 2 5 8 2 0
Connect with Media Lab researchers 1 0 3 13 0
Organize my visit 1 2 3 8 3
Remember interesting projects 1 2 1 7 6

Table 2: Users opinions of the GI’s value doing different
tasks. A score of 1 indicates strong disagreement while a
score of five indicates strong agreement.

1 2 3 4 5

I got value out of the GI 1 0 0 11 5
The screens were helpful 1 0 0 12 4
The trip report was helpful 1 1 3 9 3

Table 3: Users evaluate the GI. A score of 1 indicates strong
disagreement while a score of five indicates strong agreement.

in-depth exploration of the displayed information (more users
and favorited projects) and more social engagement (more
co-logins).

Based on the data and by our own observations, the GI
added substantial value during all three Sponsor Week pe-
riods. There were often crowds of people gathered around
the displays, and we witnessed many conversations between
sponsors about favorite projects while collaboratively explor-
ing the GI and exchanging charms with each other. GI use
and value fell off steeply in the times between Sponsor Weeks,
when we found it more challenging to maintain the system, to
get visitors set up with RFID badges, and to introduce them
the systems functionality.

During our third deployment, we preformed a small user
study of visitors who used the screens and trip reports. Sev-
enteen users took our study; for some of these users it was
their first time at the lab, while others had been to multiple
(sometimes up to 10) sponsor weeks. There was no signifi-
cant difference in response from those who were visiting for
the first time and the more experienced visitors.

In Table 2, we can see the various GI goals and users’
responses to those goals. Using the AI system to discover
projects was the most positive goal, with an average rating
of 4.0, followed closely by using the system to remember
and organize visited projects. In Table 3, we can see that
sixteen out of seventeen users got value out of the Glass
Infrastructure.

The Future of the Glass Infrastructure

The AI model itself will need to be updated during the life
of the project as lab research focuses shift and new projects
are created. Since the information is read in an unsupervised
manner from the internal database, the model is automatically
updated periodically.

In the next version of the system, we plan to incorporate
adhoc social networking for sponsors. The AI will not only
recommend projects the user should visit, but people the user
should talk to and other visitors which the visitor might want

to network with.
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